Subproject 2 (Biology – Termites)
- Bhar, A., Chakraborty, A., & Roy, A. (2022). Plant responses to biotic stress: Old memories matter. Plants, 11(1), 84. https://doi.org/10.3390/plants11010084
- Bourguignon, T., Dahlsjö, C. A. L., Salim, K. A., & Evans, T. A. (2018). Termite diversity and species composition in heath forests, mixed dipterocarp forests, and pristine and selectively logged tropical peat swamp forests in Brunei. Insectes Sociaux, 65(3), 439–444. https://doi.org/10.1007/s00040-018-0630-y
- Bourguignon, T., Lo, N., Dietrich, C., Šobotník, J., Sidek, S., Roisin, Y., Brune, A., & Evans, T. A. (2018). Rampant Host Switching Shaped the Termite Gut Microbiome. Current Biology, 28(4), 649-654.e2. https://doi.org/10.1016/j.cub.2018.01.035
- Bras, A., Roy, A., Heckel, D. G., Anderson, P., & Karlsson Green, K. (2022). Pesticide resistance in arthropods: Ecology matters too. Ecology Letters, 25(8), 1746–1759. https://doi.org/10.1111/ele.14030
- Bucek, A., Šobotník, J., He, S., Shi, M., McMahon, D. P., Holmes, E. C., Roisin, Y., Lo, N., & Bourguignon, T. (2019). Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies. Current Biology, 29(21), 3728-3734.e4. https://doi.org/10.1016/j.cub.2019.08.076
- Chakraborty, A., Ashraf, M. Z., Modlinger, R., Synek, J., Schlyter, F., & Roy, A. (2020). Unravelling the gut bacteriome of Ips (Coleoptera: Curculionidae: Scolytinae): identifying core bacterial assemblage and their ecological relevance. Scientific Reports, 10(1), 18572. https://doi.org/10.1038/s41598-020-75203-5
- Chakraborty, A., Modlinger, R., Ashraf, M. Z., Synek, J., Schlyter, F., & Roy, A. (2020). Core Mycobiome and Their Ecological Relevance in the Gut of Five Ips Bark Beetles (Coleoptera: Curculionidae: Scolytinae). Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.568853
- Chakraborty, D., Dobor, L., Zolles, A., Hlásny, T., & Schueler, S. (2021). High-resolution gridded climate data for Europe based on bias-corrected EURO-CORDEX: The ECLIPS dataset. Geoscience Data Journal, 8(2), 121–131. https://doi.org/10.1002/gdj3.110
- Chakraborty, D., Móricz, N., Rasztovits, E., Dobor, L., & Schueler, S. (2021). Provisioning forest and conservation science with high-resolution maps of potential distribution of major European tree species under climate change. Annals of Forest Science, 78(2), 26. https://doi.org/10.1007/s13595-021-01029-4
- González Plaza, J. J. (2020). Small RNAs as Fundamental Players in the Transference of Information During Bacterial Infectious Diseases. Frontiers in Molecular Biosciences, 7. https://doi.org/10.3389/fmolb.2020.00101
- He, S., Sieksmeyer, T., Che, Y., Mora, M. A. E., Stiblik, P., Banasiak, R., Harrison, M. C., Šobotník, J., Wang, Z., Johnston, P. R., & McMahon, D. P. (2021). Evidence for reduced immune gene diversity and activity during the evolution of termites. Proceedings of the Royal Society B: Biological Sciences, 288(1945), 20203168. https://doi.org/10.1098/rspb.2020.3168
- Hervé, V., Liu, P., Dietrich, C., Sillam-Dusses, D., Stiblik, P., Šobotník, J., & Brune, A. (2020). Phylogenomic analysis of 589 metagenome-assembled genomes encompassing all major prokaryotic lineages from the gut of higher termites. PeerJ, 2020(2), e8614. https://doi.org/10.7717/peerj.8614
- Palma-Onetto, V., Pflegerová, J., Plarre, R., Synek, J., Cvačka, J., Sillam-Dusses, D., & Šobotník, J. (2019). The labral gland in termites: Evolution and function. Biological Journal of the Linnean Society, 126(3), 587–597. https://doi.org/10.1093/biolinnean/bly212
- Sellamuthu, G., Bílý, J., Joga, M. R., Synek, J., & Roy, A. (2022). Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae). Scientific Reports, 12(1), 4671. https://doi.org/10.1038/s41598-022-08434-3
- Sen, M. K., Hamouzová, K., Košnarová, P., Roy, A., & Soukup, J. (2021). Identification of the most suitable reference gene for gene expression studies with development and abiotic stress response in Bromus sterilis. Scientific Reports, 11(1), 13393. https://doi.org/10.1038/s41598-021-92780-1
- Sillam-Dusses, D., Hradecký, J., Stiblik, P., da Cunha, H. F., Carrijo, T. F., Lacey, M. J., Bourguignon, T., & Šobotník, J. (2021). The trail-following pheromone of the termite Serritermes serrifer. Chemoecology, 31(1), 11–17. https://doi.org/10.1007/s00049-020-00324-2
- Singh, A., Mehta, S., Yadav, S., Nagar, G., Ghosh, R., Roy, A., Chakraborty, A., & Singh, I. K. (2022). How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. International Journal of Molecular Sciences, 23(4), 1995. https://doi.org/10.3390/ijms23041995
- Singh, S., Singh, A., Baweja, V., Roy, A., Chakraborty, A., & Singh, I. K. (2021). Molecular rationale of insect-microbes symbiosis—from insect behaviour to mechanism. Microorganisms, 9(12), 2422. https://doi.org/10.3390/microorganisms9122422
- Soukup, P., Větrovský, T., Stiblik, P., Votýpková, K., Chakraborty, A., Sillam-Dusses, D., Kolařík, M., Odriozola, I., Lo, N., Baldrian, P., Šobotník, J., & Bourguignone, T. (2021). Termites Are Associated with External Species-Speci?c Bacterial Communities. Applied and Environmental Microbiology, 87(2), 1–13. https://doi.org/10.1128/AEM.02042-20
- Stiblik, P., Akama, P. D., & Šobotník, J. (2021). Complete mitochondrial genome of the drywood termite Cryptotermes havilandi (Isoptera: Kalotermitidae). Mitochondrial DNA Part B: Resources, 6(2), 533–535. https://doi.org/10.1080/23802359.2021.1873710
- Taerum, S. J., Jasso-Selles, D. E., Wilson, M., Ware, J. L., Sillam-Dusses, D., Šobotník, J., & Gile, G. H. (2019). Molecular Identity of Holomastigotes (Spirotrichonymphea, Parabasalia) with Descriptions of Holomastigotes flavipes n. sp. and Holomastigotes tibialis n. sp. Journal of Eukaryotic Microbiology, 66(6), 882–891. https://doi.org/10.1111/jeu.12739
- Yadav, M., Pandey, J., Chakraborty, A., Hassan, M. I., Kundu, J. K., Roy, A., Singh, I. K., & Singh, A. (2022). A Comprehensive Analysis of Calmodulin-Like Proteins of Glycine max Indicates Their Role in Calcium Signaling and Plant Defense Against Insect Attack. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.817950