Subproject 9 and 10 (Wood Science)
- Adamová, T., Hradecký, J., & Pánek, M. (2020). Volatile organic compounds (VOCs) from wood and wood-based panels: Methods for evaluation, potential health risks, and mitigation. Polymers, 12(10), 1–21. https://doi.org/10.3390/polym12102289
- Adamová, T., Hradecký, J., & Prajer, M. (2019). VOC emissions from spruce strands and hemp shive: In search for a low emission raw material for bio-based construction materials. Materials, 12(12), 2026. https://doi.org/10.3390/ma12122026
- Aniszewska, M., Gendek, A., Hýsek, Š., Malat’ák, J., Velebil, J., & Tamelová, B. (2020). Changes in the composition and surface properties of torrefied conifer cones. Materials, 13(24), 1–14. https://doi.org/10.3390/ma13245660
- Babiak, M., Gaff, M., Sikora, A., & Hysek, Š. (2018). Modulus of elasticity in three- and four-point bending of wood. Composite Structures, 204, 454–465. https://doi.org/10.1016/j.compstruct.2018.07.113
- Bachtiar, E. V., Niemz, P., & Sandberg, D. (2022). Properties of adhesive films used in cultural assets. Wood Material Science and Engineering, 17(2), 147–150. https://doi.org/10.1080/17480272.2022.2030404
- Bomba, J., Šedivka, P., Hýsek, Š., Fáber, J., & Oberhofnerová, E. (2018). Influence of glue line thickness on the strength of joints bonded with PVAC adhesives. Forest Products Journal, 68(2), 120–126. https://doi.org/10.13073/FPJ-D-17-00038
- Borůvka, V., Šedivka, P., Novák, D., Holeček, T., & Turek, J. (2021). Haptic and aesthetic properties of heat-treated modified birch wood. Forests, 12(8), 1081. https://doi.org/10.3390/f12081081
- Corleto, R., Gaff, M., Niemz, P., Sethy, A. K., Todaro, L., Ditommaso, G., Razaei, F., Sikora, A., Kaplan, L., Das, S., Kamboj, G., Gašparík, M., Kačík, F., & Macků, J. (2020). Effect of thermal modification on properties and milling behaviour of African padauk (Pterocarpus soyauxii Taub.) wood. Journal of Materials Research and Technology, 9(4), 9315–9327. https://doi.org/10.1016/j.jmrt.2020.06.018
- Ditommaso, G., Gaff, M., Kačík, F., Sikora, A., Sethy, A., Corleto, R., Razaei, F., Kaplan, L., Kubš, J., Das, S., Kamboj, G., Gašparík, M., Šedivka, P., Hýsek, Š., Macků, J., & Sedlecký, M. (2020). Interaction of technical and technological factors on qualitative and energy/ecological/economic indicators in the production and processing of thermally modified merbau wood. Journal of Cleaner Production, 252, 119793. https://doi.org/10.1016/j.jclepro.2019.119793
- Gaff, M., Hýsek, Š., Sikora, A., & Babiak, M. (2019). Newly developed boards made from crushed rapeseed stalk and their bendability properties. BioResources, 13(3), 4776–4794. https://doi.org/10.15376/biores.13.3.4776-4794
- Gaff, M., Kačík, F., Sandberg, D., Babiak, M., Turčani, M., Niemz, P., & Hanzlík, P. (2019). The effect of chemical changes during thermal modification of European oak and Norway spruce on elasticity properties. Composite Structures, 220, 529–538. https://doi.org/10.1016/j.compstruct.2019.04.034
- Gaff, M., Razaei, F., Sikora, A., Hýsek, Š., Sedlecký, M., Ditommaso, G., Corleto, R., Kamboj, G., Sethy, A., Vališ, M., & Řipa, K. (2020). Interactions of monitored factors upon tensile glue shear strength on laser cut wood. Composite Structures, 234, 111679. https://doi.org/10.1016/j.compstruct.2019.111679
- Gašparík, M., Karami, E., Rezaei, F., Kytka, T., Das, S., & Lesáková, D. (2022). The Influence of Alternating Lower and Higher Temperatures on the Bending Characteristics of Glued Norway Spruce (Picea abies (L.) H. Karst.) and European Larch (Larix decidua Mill.) Wood. Forests, 13(3), 364. https://doi.org/10.3390/f13030364
- Gašparík, M., Karami, E., Sethy, A. K., Das, S., Kytka, T., Paukner, F., & Gaff, M. (2021). Effect of freezing and heating on the screw withdrawal capacity of Norway spruce and European larch wood. Construction and Building Materials, 303, 124457. https://doi.org/10.1016/j.conbuildmat.2021.124457
- Hýsek, Š., Čermák, J., & Lexa, M. (2019). Influence of lignocellulosic waste pre-treatment on the characteristics of bond rupture. Sustainability (Switzerland), 11(17), 4784. https://doi.org/10.3390/su11174784
- Hýsek, Š., Gaff, M., Sikora, A., & Babiak, M. (2018). New composite material based on winter rapeseed and his elasticity properties as a function of selected factors. Composites Part B: Engineering, 153, 108–116. https://doi.org/10.1016/j.compositesb.2018.07.042
- H?sek, Š., Neuberger, P., Sikora, A., Schönfelder, O., & Ditommaso, G. (2019). Waste utilization: Insulation panel from recycled polyurethane particles and wheat husks. Materials, 12(19), 3075. https://doi.org/10.3390/ma12193075
- Hýsek, Š., Podlena, M., Bartsch, H., Wenderdel, C., & Böhm, M. (2018). Effect of wheat husk surface pre-treatment on the properties of husk-based composite materials. Industrial Crops and Products, 125, 105–113. https://doi.org/10.1016/j.indcrop.2018.08.035
- Hýsek, Š., Podlena, M., Böhm, M., Bartsch, H., & Wenderdel, C. (2019). Effect of cold plasma surface pre-treatment of wheat straw particles on straw board properties. BioResources, 13(3), 5065–5079. https://doi.org/10.15376/biores.13.3.5065-5079
- Hýsek, Š., Sikora, A., Schönfelder, O., & Böhm, M. (2019). Physical and mechanical properties of boards made from modified rapeseed straw particles. BioResources, 13(3), 6396–6408. https://doi.org/10.15376/biores.13.3.6396-6408
- Hýsková, P., Gaff, M., Hidalgo-Cordero, J. F., & Hýsek, Š. (2020). Composite materials from totora (Schoenoplectus californicus. C.A. Mey, Sojak): Is it worth it? Composite Structures, 232, 111572. https://doi.org/10.1016/j.compstruct.2019.111572
- H?sková, P., H?sek, Š., & Jarsk?, V. (2020). The utilization of crop residues as forest protection: Predicting the production of wheat and rapeseed residues. Sustainability (Switzerland), 12(14), 5828. https://doi.org/10.3390/su12145828
- Kamboj, G., Gašparík, M., Gaff, M., Kačík, F., Sethy, A. K., Corleto, R., Razaei, F., Ditommaso, G., Sikora, A., Kaplan, L., Kubš, J., Das, S., & Macků, J. (2020). Surface quality and cutting power requirement after edge milling of thermally modified meranti (Shorea spp.) wood. Journal of Building Engineering, 29, 101213. https://doi.org/10.1016/j.jobe.2020.101213
- Karami, E., Bardet, S., Matsuo, M., Bremaud, I., Gaff, M., & Gril, J. (2020). Effects of mild hygrothermal treatment on the physical and vibrational properties of spruce wood. Composite Structures, 253, 112736. https://doi.org/10.1016/j.compstruct.2020.112736
- Kristýna, Š., Štěpán, H., Eliška, O., Miloš, P., & Hakan, F. (2020). Effect of artificial weathering and temperature cycling on the adhesion strength of waterborne acrylate coating systems used for wooden windows. Journal of Green Building, 15(1), 3–14. https://doi.org/10.3992/1943-4618.15.1.1
- Mitterpach, J., Vaňová, R., Šedivka, P., & Štefko, J. (2022). A Comparison of the Environmental Performance between Construction Materials and Operational Energy of Nearly Zero-Energy Wood-Based Educational Building. Forests, 13(2), 220. https://doi.org/10.3390/f13020220
- Pánek, M., Šimůnková, K., Novák, D., Dvořák, O., Schönfelder, O., Šedivka, P., & Kobetičová, K. (2020). Caffeine and tio2 nanoparticles treatment of spruce and beech wood for increasing transparent coating resistance against uv-radiation and mould attacks. Coatings, 10(12), 1–13. https://doi.org/10.3390/coatings10121141
- Pavelek, M., & Adamová, T. (2019). Bio-waste thermal insulation panel for sustainable building construction in steady and unsteady-state conditions. Materials, 12(12), 2004. https://doi.org/10.3390/ma12122004
- Pavelek, M., Prajer, M., & Trgala, K. (2018). Static and dynamic thermal characterization of timber frame/wheat (Triticum Aestivum) chaffthermal insulation panel for sustainable building construction. Sustainability (Switzerland), 10(7). https://doi.org/10.3390/su10072363
- Razaei, F., Gaff, M., Sethy, A. K., Niemz, P., Kamboj, G., Ditommaso, G., Corleto, R., Das, S., & Gašparík, M. (2020). Surface quality measurement by contact and laser methods on thermally modified spruce wood after plain milling. International Journal of Advanced Manufacturing Technology, 110(5–6), 1653–1663. https://doi.org/10.1007/s00170-020-05983-7
- Sikora, A., Gaff, M., Hysek, Š., & Babiak, M. (2018). The plasticity of composite material based on winter rapeseed as a function of selected factors. Composite Structures, 202, 783–792. https://doi.org/10.1016/j.compstruct.2018.04.019
- Sikora, A., Kačík, F., Gaff, M., Vondrová, V., Bubeníková, T., & Kubovský, I. (2018). Impact of thermal modification on color and chemical changes of spruce and oak wood. Journal of Wood Science, 64(4), 406–416. https://doi.org/10.1007/s10086-018-1721-0
- Šimůnková, K., Hýsek, Š., Reinprecht, L., Šobotník, J., Lišková, T., & Pánek, M. (2022). Lavender oil as eco-friendly alternative to protect wood against termites without negative effect on wood properties. Scientific Reports, 12(1), 1909. https://doi.org/10.1038/s41598-022-05959-5
- Šimůnková, K., Pánek, M., & Zeidler, A. (2018). Comparison of selected properties of shellac varnish for restoration and polyurethane varnish for reconstruction of historical artefacts. Coatings, 8(4), 119. https://doi.org/10.3390/coatings8040119
- Šimůnková, K., Reinprecht, L., Nábělková, J., Hýsek, Š., Kindl, J., Borůvka, V., Lišková, T., Šobotník, J., & Pánek, M. (2021). Caffeine – Perspective natural biocide for wood protection against decaying fungi and termites. Journal of Cleaner Production, 304, 127110. https://doi.org/10.1016/j.jclepro.2021.127110
- Trgala, K., Pavelek, M., & Wimmer, R. (2019). Energy performance of five different building envelope structures using a modified Guarded Hot Box apparatus—Comparative analysis. Energy and Buildings, 195, 116–125. https://doi.org/10.1016/j.enbuild.2019.04.036