Subproject 5 (Forestry)
- Abdollahnejad, A., & Panagiotidis, D. (2020). Tree species classification and health status assessment for a mixed broadleaf-conifer forest with uas multispectral imaging. Remote Sensing, 12(22), 1–21. https://doi.org/10.3390/rs12223722
- Grznárová, A., Mokroš, M., Surový, P., Slavík, M., Pondelík, M., & Mergani, J. (2019). The crown diameter estimation from fixed wing type of uav imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 42(2/W13), 337–341. https://doi.org/10.5194/isprs-archives-XLII-2-W13-337-2019
- Konôpka, B., Barna, M., Bosela, M., & Lukac, M. (2020). Biomass allocation to resource acquisition compartments is affected by tree density manipulation in European beech after three decades. Forests, 11(9). https://doi.org/10.3390/f11090940
- Konôpka, B., Pajtík, J., Bošeľa, M., Šebeň, V., & Shipley, L. A. (2020). Modeling forage potential for red deer (Cervus elaphus): a tree-level approach. European Journal of Forest Research, 139(3), 419–430. https://doi.org/10.1007/s10342-019-01250-x
- Konôpka, B., Pajtík, J., Šebeň, V., & Merganičová, K. (2022). Modeling Bark Thickness and Bark Biomass on Stems of Four Broadleaved Tree Species. Plants, 11(9), 1148. https://doi.org/10.3390/plants11091148
- Konôpka, B., Pajtík, J., Šebeň, V., Merganičová, K., & Surový, P. (2020). Silver birch aboveground biomass allocation pattern, stem and foliage traits with regard to intraspecific crown competition. Central European Forestry Journal, 66(3), 159–169. https://doi.org/10.2478/forj-2020-0013
- Konôpka, B., Pajtík, J., Šebeň, V., Surový, P., & Merganičová, K. (2020). Biomass allocation into woody parts and foliage in young common aspen (Populus tremula l.)-trees and a stand-level study in thewestern Carpathians. Forests, 11(4), 464. https://doi.org/10.3390/F11040464
- Konôpka, B., Pajtík, J., Šebeň, V., Surový, P., & Merganičová, K. (2021). Young silver birch grows faster and allocates higher portion of biomass into stem than norway spruce, a case study from a post-disturbance forest. Forests, 12(4), 433. https://doi.org/10.3390/f12040433
- Konôpka, B., Pajtík, J., & Shipley, L. A. (2018). Intensity of red deer browsing on young rowans differs between freshly-felled and standing individuals. Forest Ecology and Management, 429, 511–519. https://doi.org/10.1016/j.foreco.2018.07.048
- Konôpka, B., Šebe, V., & Pajtík, J. (2019). Species Composition and Carbon Stock of Tree Cover at a Postdisturbance Area in Tatra National Park, Western Carpathians. Mountain Research and Development, 39(1), R71–R80. https://doi.org/10.1659/MRD-JOURNAL-D-19-00008.1
- Konôpka, B., Šebeň, V., & Merganičová, K. (2021). Forest regeneration patterns differ considerably between sites with and without windthrow wood logging in the high tatra mountains. Forests, 12(10), 1349. https://doi.org/10.3390/f12101349
- Konôpka, J., Midriak, R., & Konôpka, B. (2018). Significant works of forestry research from the second half of 20th century in Slovakia. Central European Forestry Journal, 64(3–4), 157–179. https://doi.org/10.1515/forj-2017-0041
- Koreň, M., Hunčaga, M., Chudá, J., Mokroš, M., & Surový, P. (2020). The influence of cross-section thickness on diameter at breast height estimation from point cloud. ISPRS International Journal of Geo-Information, 9(9), 495. https://doi.org/10.3390/ijgi9090495
- Kuželka, K., & Surový, P. (2018). Mapping forest structure using uas inside flight capabilities. Sensors (Switzerland), 18(7), 2245. https://doi.org/10.3390/s18072245
- Lalík, M., Holuša, J., Galko, J., Resnerová, K., Kunca, A., Nikolov, C., Mudrončeková, S., & Surový, P. (2019). Simple is best: Pine twigs are better than artificial lures for trapping of pine weevils in pitfall traps. Forests, 10(8), 642. https://doi.org/10.3390/f10080642
- Liang, X., Kukko, A., Balenovic, I., Ninni, S., Junttila, S., Kankare, V., Holopainen, M., Martin, M., Surovy, P., Kaartinen, H., Luka, J., Honkavaara, E., Nasi, R., Jingbin, L., Hollaus, M., Tian, J., Yu, X., Jie, P., Shangshu, C., … Hyyppa, J. (2022). Close-Range Remote Sensing of Forests: The State of the Art, Challenges, and Opportunities for Systems and Data Acquisitions. IEEE Geoscience and Remote Sensing Magazine, 10(3), 32–71. https://doi.org/10.1109/MGRS.2022.3168135
- Máliš, F., Konôpka, B., Šebeň, V., Pajtík, J., & Merganičová, K. (2021). Short-term dynamics of vegetation diversity and aboveground biomass of picea abies (L.) H. Karst. forests after heavy windstorm disturbance. Forests, 12(1), 1–14. https://doi.org/10.3390/f12010097
- Mokroš, M., Liang, X., Surový, P., Valent, P., Čerňava, J., Chudý, F., Tunák, D., Saloň, I., & Merganič, J. (2018). Evaluation of close-Range photogrammetry image collection methods for estimating tree diameters. ISPRS International Journal of Geo-Information, 7(3), 93. https://doi.org/10.3390/ijgi7030093
- Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., Kuželka, K., Surový, P., Klimánek, M., Zięba-Kulawik, K., Bobrowski, R., & Liang, X. (2021). Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation, 104, 102512. https://doi.org/10.1016/j.jag.2021.102512
- Mokroš, M., Výbošt’ok, J., Tomaštík, J., Grznárová, A., Valent, P., Slavík, M., & Merganič, J. (2018). High precision individual tree diameter and perimeter estimation from close-range photogrammetry. Forests, 9(11), 696. https://doi.org/10.3390/f9110696
- Pajtík, J., Cihák, T., Konôpka, B., Merganičová, K., & Fabiánek, P. (2018). Annual tree mortality and felling rates in the Czech Republic and Slovakia over three decades. Central European Forestry Journal, 64(3–4), 238–248. https://doi.org/10.1515/forj-2017-0048
- Panagiotidis, D., & Abdollahnejad, A. (2021a). Accuracy Assessment of Total Stem Volume Using Close-Range Sensing: Advances in Precision Forestry. Forests, 12(6), 717. https://doi.org/10.3390/f12060717
- Panagiotidis, D., & Abdollahnejad, A. (2021b). Reliable estimates of merchantable timber volume from terrestrial laser scanning. Remote Sensing, 13(18), 3610. https://doi.org/10.3390/rs13183610
- Panagiotidis, D., Abdollahnejad, A., & Slavík, M. (2021). Assessment of stem volume on plots using terrestrial laser scanner: A precision forestry application. Sensors (Switzerland), 21(1), 1–17. https://doi.org/10.3390/s21010301
- Panagiotidis, D., Abdollahnejad, A., Surový, P., & Kuželka, K. (2019). Detection of fallen logs from high-resolution UAV images. New Zealand Journal of Forestry Science, 49(1). https://doi.org/10.33494/nzjfs492019x26x
- Šebeň, V., & Konôpka, B. (2020). Tree height and species composition of young forest stands fifteen years after the large-scale wind disturbance in Tatra National Park. Central European Forestry Journal, 66(3), 131–140. https://doi.org/10.2478/forj-2020-0010
- Šebeň, V., Kučera, M., Merganičová, K., & Konôpka, B. (2018). The current state of non-forest land in the Czech Republic and Slovakia-forest cover estimates based on the national inventory data. Central European Forestry Journal, 64(3–4), 207–222. https://doi.org/10.1515/forj-2017-0043
- Tomaštík, J., Mokroš, M., Surový, P., Grznárová, A., & Merganič, J. (2019). UAV RTK/PPK method-An optimal solution for mapping inaccessible forested areas? Remote Sensing, 11(6), 721. https://doi.org/10.3390/RS11060721
- Usoltsev, V. A., Merganičová, K., Konôpka, B., Osmirko, A. A., Tsepordey, I. S., & Chasovskikh, V. P. (2019). Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Journal, 66(3–4), 166–179. https://doi.org/10.2478/forj-2019-0017
- van Oijen, M., Barcza, Z., Confalonieri, R., Korhonen, P., Kröel-Dulay, G., Lellei-Kovács, E., Louarn, G., Louault, F., Martin, R., Moulin, T., Movedi, E., Picon-Cochard, C., Rolinski, S., Viovy, N., Wirth, S. B., & Bellocchi, G. (2020). Incorporating biodiversity into biogeochemistry models to improve prediction of ecosystem services in temperate grasslands: Review and roadmap. Agronomy, 10(2), 259. https://doi.org/10.3390/agronomy10020259